Study of Kinetic coefficients of a Membrane Bioreactor (MBR) for municipal wastewater treatment
Authors
Abstract:
Background & Aims of the Study: In order to design membrane bioreactors (MBR) properly, it is essential to comprehend the behavior of microorganisms in such wastewater treatment processes. Materials & Methods: In this study, a lab-scale MBR process was operated to determine the biokinetic coefficients of the MBR system under different MLSS concentrations of 6800, 7000, 7400, and 7800 mg/l and organic loading rates of 0.5 kg COD/m3/day. Results: The results of this study showed that the yield of microorganisms (Y), the endogenous decay coefficient (kd), the maximum specific growth rate (μmax) and the saturation constant (Ks) were in the range of 0.67 g VSS/g COD, 0.56 d−1, 1.86 d−1 and 6.65 mg COD/l, respectively. Conclusions: The kinetic coefficients in this study can be used to improve the operation and design the MBR system in full scale.
similar resources
Municipal Wastewater Treatment Using a Hollow Fiber Membrane Bioreactor
A bioreactor equipped with hollow fiber microfiltration membranes was applied for wastewater treatment. Removal of chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) was investigated. The experimental setup consisted of influent and effluent tanks, and membrane modules using Polyvinyl Di–Fluoride (PVDF) hollow fibers. The operation program included suction and backwash...
full textIndustrial Wastewater Treatment by Using MBR (Membrane Bioreactor) Review Study
This study demonstrated the importance, process, activation and applications of Membrane in bioreactor to treat the waste water. Membrane Bioreactor (MBR) process consists of a biological reactor integrated with membranes that combine clarification and filtration of an activated sludge process into a simplified, single step process. Operating as an MBR allows conventional activated sludge plant...
full textStudy on Operational Conditions to Minimize Membrane Fouling in Membrane Bioreactor (MBR) System for Wastewater Treatment-Preliminary Pilot Tests
In this study, effect of antiscalant usage on minimizing of membrane fouling due to high water hardness during wastewater treatment tests run by a pilot-scale membrane bioreactor (MBR) system. The membranes used in these studies were Kubota flat sheet MBR membranes made from polyethylene with a pore size of 0.4 micrometer. Preliminary tests were carried out with tap water...
full textMembrane Bioreactors (MBR) for Municipal Wastewater Treatment – An Australian Perspective
With the current focus on water reuse projects and the role they play in the water cycle, the search for cost competitive advanced wastewater treatment technologies has never before been so important. Australia in particular has a need to develop new strategies for water management and will continue to move towards water reuse where such projects are shown to be financially viable. This paper d...
full textDevelopment of Membrane Bioreactor to Membrane Electro-bioreactor for Advanced Treatment of Wastewater
Limited available water resources have rendered wastewater reuse an important issue to specialists in most developed countries, today. The current study works on membrane filtration for treatment of industrial wastewater. By comparing the two methods of membrane bioreactor (MBR) and hybrid membrane electro bioreactor (MEBR) processes, it finds that earlier fouling in the membrane occurs in the ...
full textRecalcitrant industrial wastewater treatment by membrane bioreactor (MBR)
Membrane Bioreactor (MBR) process consists of a biological reactor integrated with membranes that combine clarification and filtration of an activated sludge process into a simplified, single step process. The membrane is an absolute barrier to suspended matter and microorganisms and it offers the possibility of operating the system at high mixed liquor suspended solids (MLSS) concentration. Th...
full textMy Resources
Journal title
volume 2 issue 3
pages 98- 103
publication date 2013-08
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023